Skip to content
Unit 1: Limits and Continuity
Limits Overview
Limits Overview
Limit Notation (Left-Hand, Right-Hand, Overall)
Limit Notation
Left Hand Limit (LHL)
Right Hand Limit (RHL)
Overall Limit
Finding Limits Using a Graph
Finding Limits Using a Graph
Method: Finding Limits of a Graph
Example 1: Left Hand Limit
Example 2: Right Hand Limit
Example 3: Overall Limit Exists
Example 4: Overall Limit Does Not Exist
Finding a Limit Using Equations
Finding Limits Using an Equation
Option 1: Plug it in!
Identifier: Limit Option 1
Method: Limit Option 1
Example 1: Option 1 (Plug it in)
Option 2: Factor and Cancel
Identifier: Factor and Cancel
Method: Factor and Cancel
Example 1: Factor and Cancel
Example 2: Factor and Cancel
Option 3: Complex Fractions
Identifier: Complex Fraction Limits
Method: Complex Fraction Limits
Example 1: Complex Fraction Limit
Option 4: Square Roots
Identifier: Square Root Limits
Method: Square Root Limits
Example 1: Square Root Limits
Option 5: Absolute Value
Identifier: Absolute Value Limits
Method: Absolute Value Limits
Example 1: Absolute Value Limit
Option 6
Trig Functions Category 1: Simplify then Plug it in
Identifier: Trig Function Limits Category 1
Method: Trig Function Limits Category 1
Example 1: Trig Function Limit Category 1
Example 2: Trig Function Limit Category 1
Option 7
Trig Functions Category 2: Sine Limit Identity
Identifier: Trig Function Category 2
Method: Trig Function Limits Category 2
Example 1: Trig Function Limit Category 2
Option 8
Trig Functions Category 3: Cosine Limit Identity
Identifier: Trig Function Category 3
Method: Trig Function Category 3
Example 1: Trig Function Limit Category 3
Option 9: Vertical Asymptotes (Limits that equal infinity)
Identifier: Vertical Asymptotes
Method: Vertical Asymptotes
Example 1: Vertical Asymptotes
Example 2: Vertical Asymptotes
Example 3: Vertical Asymptotes
Example 4: Vertical Asymptotes
Option 10: Horizontal Asymptotes (Limits whose x-value is heading towards infinity)
Identifier: Horizontal Asymptotes
Method 1: Leading Behavior
Method 2: Dividing by the Highest Power of x
Example 1: Leading Behavior (Top-Heavy)
Example 2: Leading Behavior (Bottom-Heavy)
Example 3: Leading Behavior (Balanced)
Example 4: Dividing by the Highest Power of x (Top-Heavy)
Example 5: Dividing by the Highest Power of x (Bottom-Heavy)
Example 6: Dividing by the Highest Power of x (Balanced)
Example 7: 2 Different Horizontal Asymptotes (Pro Level)
Option 11: Squeeze Theorem (Sandwich Theorem)
Identifier: Squeeze Theorem
Method: Squeeze Theorem
Example 1: Squeeze Theorem
Continuity
Definition of Continuous Function
Determining Continuity: Given a Graph
Identifier: Continuity Using a Graph
Method: Continuity Using a Graph
Example 1: Continuity Using a Graph
Determining Continuity: Given an Equation
Identifier: Continuity Using an Equation
Method: Continuity Using an Equation
Example 1: Continuity Using an Equation
Intermediate Value Theorem
Identifier: Intermediate Value Theorem
Method: Intermediate Value Theorem
Example 1: Intermediate Value Theorem
Previous Topic
Next Topic

Option 3: Complex Fractions

  1. Unit 1: Limits and Continuity
  2. Option 3: Complex Fractions
Lesson Content
0% Complete 0/3 Steps
Identifier: Complex Fraction Limits
Method: Complex Fraction Limits
Example 1: Complex Fraction Limit
Previous Topic
Back to Course
Next Topic

Leave a Comment Cancel reply

You must be logged in to post a comment.

AP Calc is just getting started!

Book Tutoring Now
X
Optimized by Optimole
Login
Accessing this course requires a login. Please enter your credentials below!

Lost Your Password?